
Automated Theorem Proving for Type
Inference, Constructively

Ekaterina Komentdantskaya1, joint work with Peng Fu1 and Tom
Schrijvers2

1Heriot-Watt University, Edinburgh; 2Leuven University

Programming Languages and Compilers, April 2017

Outline

(Motivation) Verification methods: the good, the bad and the
ugly

(Background) Proof-carrying code, revisited

(Technical Contribution) Going beyond state-of-the art:
corecursion in type inference

(Conclusion) New type inference recipe: tastes good, does
good

2 / 36

Outline

(Motivation) Verification methods: the good, the bad and the
ugly

(Background) Proof-carrying code, revisited

(Technical Contribution) Going beyond state-of-the art:
corecursion in type inference

(Conclusion) New type inference recipe: tastes good, does
good

2 / 36

Outline

(Motivation) Verification methods: the good, the bad and the
ugly

(Background) Proof-carrying code, revisited

(Technical Contribution) Going beyond state-of-the art:
corecursion in type inference

(Conclusion) New type inference recipe: tastes good, does
good

2 / 36

Outline

(Motivation) Verification methods: the good, the bad and the
ugly

(Background) Proof-carrying code, revisited

(Technical Contribution) Going beyond state-of-the art:
corecursion in type inference

(Conclusion) New type inference recipe: tastes good, does
good

2 / 36

Two styles of verification

Algorithmic

Problems:
I do we trust the

specification?
I do we trust the ATP?

(itself not verified)
(E.g. SMT solvers – 100K
lines of C++ code)

Typeful

I Curry-Howard style
of verification

I Proofs are functions
that we can re-run
and check
independently

3 / 36

Two styles of verification

Algorithmic

Problems:
I do we trust the

specification?
I do we trust the ATP?

(itself not verified)
(E.g. SMT solvers – 100K
lines of C++ code)

Typeful

I Curry-Howard style
of verification

I Proofs are functions
that we can re-run
and check
independently

3 / 36

Type Computation

In typed functional languages and constructive theorem
provers, to prove that a context Γ entails theorem A, we need to
construct proof p as an inhabitant of type A.

Γ ` p : A

Type computation problems:
Γ ` p : A? – Type Checking;
Γ ` p :? – Type Inference;
Γ `? : A – Type Inhabitation.
The latter is facilitated by tactic languages in ITP. This talk is
about type inhabitation, too.
All three are sometimes known under the name of “type inference", I’ll use
this terminology, too.

4 / 36

Type Computation

In typed functional languages and constructive theorem
provers, to prove that a context Γ entails theorem A, we need to
construct proof p as an inhabitant of type A.

Γ ` p : A

Type computation problems:
Γ ` p : A? – Type Checking;
Γ ` p :? – Type Inference;
Γ `? : A – Type Inhabitation.

The latter is facilitated by tactic languages in ITP. This talk is
about type inhabitation, too.
All three are sometimes known under the name of “type inference", I’ll use
this terminology, too.

4 / 36

Type Computation

In typed functional languages and constructive theorem
provers, to prove that a context Γ entails theorem A, we need to
construct proof p as an inhabitant of type A.

Γ ` p : A

Type computation problems:
Γ ` p : A? – Type Checking;
Γ ` p :? – Type Inference;
Γ `? : A – Type Inhabitation.
The latter is facilitated by tactic languages in ITP. This talk is
about type inhabitation, too.
All three are sometimes known under the name of “type inference", I’ll use
this terminology, too.

4 / 36

When types get rich...

I they can be as expressive as our best ATPs
I e.g. they can encode pre- and post-conditions
I e.g. they can incorporate reasoning on first-order theories

Examples: refinement types, Liquid Haskell, F* – directly
mimic pre- and post-condition specifications and call SMT
solvers to do the solving

5 / 36

When types get rich...

I they can be as expressive as our best ATPs
I e.g. they can encode pre- and post-conditions
I e.g. they can incorporate reasoning on first-order theories

Examples: refinement types, Liquid Haskell, F* – directly
mimic pre- and post-condition specifications and call SMT
solvers to do the solving

5 / 36

Detour: Liquid Haskell example: Well typed programs
can go wrong

Consider the following well-typed program in Haskell, that
defines a function to compute the average of all elements in a
list:
average :: [Int] -> Int
average xs = sum xs ‘div‘ length xs

We get the desired response on any non-empty list of integers,
but get an exception calling
ghci > average []
∗ ∗ ∗ Exception : divide by zero

6 / 36

Detour: Liquid Haskell example: Well typed programs
can go wrong

Consider the following well-typed program in Haskell, that
defines a function to compute the average of all elements in a
list:
average :: [Int] -> Int
average xs = sum xs ‘div‘ length xs

We get the desired response on any non-empty list of integers,
but get an exception calling
ghci > average []
∗ ∗ ∗ Exception : divide by zero

6 / 36

Solution: a more fine-grained annotations on types

The refinement type {x : int | x < 100} list describes a list
of integers each of which is smaller than 100. Refinements can
express sophisticated data structure invariants.

To fix the previous example, we need to refine the type [Int],
prohibiting input lists of zero length.

7 / 36

Solution: a more fine-grained annotations on types

The refinement type {x : int | x < 100} list describes a list
of integers each of which is smaller than 100. Refinements can
express sophisticated data structure invariants.
To fix the previous example, we need to refine the type [Int],
prohibiting input lists of zero length.

7 / 36

Another code example

Suppose we define a function that computes absolute values of
integers:

abs :: Int -> Int
abs n
| 0 < n = n
| otherwise = 0 - n

We can use refinement types to infer post-conditions, e.g. to
infer that the function returns non-negative values. For
example, Liquid Haskell will be able to refine the type of abs as
follows:
{−@ abs :: Int→ Nat @−} where Nat is defined as
{−@ typeNat = {v : Int|0⇐ v} @−}.
This precise inference is possible because SMT solvers have
built-in decision procedures for arithmetic.

8 / 36

When types get rich...

I they can be as expressive as our best ATPs
I e.g. they can encode pre- and post-conditions
I e.g. they can incorporate reasoning on first-order theories

Examples: refinement types, Liquid Haskell, F* – directly
mimic pre- and post-condition specifications

I type inference calls SMT solvers to solve, check and refine
the specifications given in types

Good cause! where these methods belong in our big picture?

9 / 36

When types get rich...

I they can be as expressive as our best ATPs
I e.g. they can encode pre- and post-conditions
I e.g. they can incorporate reasoning on first-order theories

Examples: refinement types, Liquid Haskell, F* – directly
mimic pre- and post-condition specifications

I type inference calls SMT solvers to solve, check and refine
the specifications given in types

Good cause! where these methods belong in our big picture?

9 / 36

When types get rich...

I they can be as expressive as our best ATPs
I e.g. they can encode pre- and post-conditions
I e.g. they can incorporate reasoning on first-order theories

Examples: refinement types, Liquid Haskell, F* – directly
mimic pre- and post-condition specifications

I type inference calls SMT solvers to solve, check and refine
the specifications given in types

Good cause! where these methods belong in our big picture?

9 / 36

A trend in typed language development

I We lost trust in our typeful verification method
I Do we need a better picture?

10 / 36

A trend in typed language development

I We lost trust in our typeful verification method
I Do we need a better picture?

10 / 36

Personal Experience, in 2014

Reasons for doubts
I Moral (as discussed)
I Technical – lets see what they are

11 / 36

Personal Experience, in 2014

Reasons for doubts
I Moral (as discussed)
I Technical – lets see what they are

11 / 36

Outline

(Motivation) Verification methods: the good, the bad and the
ugly

(Background) Proof-carrying code, revisited

(Technical Contribution) Going beyond state-of-the art:
corecursion in type inference

(Conclusion) New type inference recipe: tastes good, does
good

12 / 36

Relation of type classes to Horn Clause logic

class Eq x where
eq :: Eq x => x -> x -> Bool

instance (Eq x, Eq y) => Eq (x, y) where
eq (x1, y1) (x2, y2) = eq x1 x2 && eq y1 y2

instance Eq Int where
eq x y = primtiveIntEq x y

This translates into the following logic program:

Eq (x),Eq (y)⇒ Eq(x, y)
⇒ Eq (Int)

Resolve the query ? Eq (Int, Int).

I We have the following reduction by SLD-resolution:

Φ ` Eq (Int, Int)→ Eq (Int),Eq (Int)→ Eq (Int)→ ∅

13 / 36

Relation of type classes to Horn Clause logic

class Eq x where
eq :: Eq x => x -> x -> Bool

instance (Eq x, Eq y) => Eq (x, y) where
eq (x1, y1) (x2, y2) = eq x1 x2 && eq y1 y2

instance Eq Int where
eq x y = primtiveIntEq x y

This translates into the following logic program:

Eq (x),Eq (y)⇒ Eq(x, y)
⇒ Eq (Int)

Resolve the query ? Eq (Int, Int).

I We have the following reduction by SLD-resolution:

Φ ` Eq (Int, Int)→ Eq (Int),Eq (Int)→ Eq (Int)→ ∅

13 / 36

Relation of type classes to Horn Clause logic

class Eq x where
eq :: Eq x => x -> x -> Bool

instance (Eq x, Eq y) => Eq (x, y) where
eq (x1, y1) (x2, y2) = eq x1 x2 && eq y1 y2

instance Eq Int where
eq x y = primtiveIntEq x y

This translates into the following logic program:

Eq (x),Eq (y)⇒ Eq(x, y)
⇒ Eq (Int)

Resolve the query ? Eq (Int, Int).

I We have the following reduction by SLD-resolution:

Φ ` Eq (Int, Int)→ Eq (Int),Eq (Int)→ Eq (Int)→ ∅
13 / 36

Problems...

Ok, we have some grounds for interfacing Haskell type class
resolution with logic programming. BUT:

I This syntactic correspondence is too shallow and fragile a
ground for a long-term and sustainable methodology

I Gives a lot of trust to ATP, the latter is used as a black-box
oracle, that certifies inference without constructing and
passing back a proof evidence

I This approach lacks a conceptual understanding of relation
between Types, Computation, and Proof

I ... it is bound to cause practical and theoretical problems
(with runnable proofs, corecursion, soundness, ...)

14 / 36

Problems...

Ok, we have some grounds for interfacing Haskell type class
resolution with logic programming. BUT:

I This syntactic correspondence is too shallow and fragile a
ground for a long-term and sustainable methodology

I Gives a lot of trust to ATP, the latter is used as a black-box
oracle, that certifies inference without constructing and
passing back a proof evidence

I This approach lacks a conceptual understanding of relation
between Types, Computation, and Proof

I ... it is bound to cause practical and theoretical problems
(with runnable proofs, corecursion, soundness, ...)

14 / 36

Problems...

Ok, we have some grounds for interfacing Haskell type class
resolution with logic programming. BUT:

I This syntactic correspondence is too shallow and fragile a
ground for a long-term and sustainable methodology

I Gives a lot of trust to ATP, the latter is used as a black-box
oracle, that certifies inference without constructing and
passing back a proof evidence

I This approach lacks a conceptual understanding of relation
between Types, Computation, and Proof

I ... it is bound to cause practical and theoretical problems
(with runnable proofs, corecursion, soundness, ...)

14 / 36

Problems...

Ok, we have some grounds for interfacing Haskell type class
resolution with logic programming. BUT:

I This syntactic correspondence is too shallow and fragile a
ground for a long-term and sustainable methodology

I Gives a lot of trust to ATP, the latter is used as a black-box
oracle, that certifies inference without constructing and
passing back a proof evidence

I This approach lacks a conceptual understanding of relation
between Types, Computation, and Proof

I ... it is bound to cause practical and theoretical problems
(with runnable proofs, corecursion, soundness, ...)

14 / 36

Problems...

Ok, we have some grounds for interfacing Haskell type class
resolution with logic programming. BUT:

I This syntactic correspondence is too shallow and fragile a
ground for a long-term and sustainable methodology

I Gives a lot of trust to ATP, the latter is used as a black-box
oracle, that certifies inference without constructing and
passing back a proof evidence

I This approach lacks a conceptual understanding of relation
between Types, Computation, and Proof

I ... it is bound to cause practical and theoretical problems
(with runnable proofs, corecursion, soundness, ...)

14 / 36

Problem - 1 (proofs are programs!)

class Eq x where
eq :: Eq x => x -> x -> Bool

instance (Eq x, Eq y) => Eq (x, y) where
eq (x1, y1) (x2, y2) = eq x1 x2 && eq y1 y2

instance Eq Int where
eq x y = primtiveIntEq x y

test :: Eq (Int, Int) => Bool
test = eq (1,2) (1,2)

{- eval: test ==> True -}

We need to construct a proof evidence d for Eq (Int, Int)
in test. In this example and generally, d needs to be run as a
function by Haskell

NB: Type Inhabitation problem!

15 / 36

Problem - 1 (proofs are programs!)

class Eq x where
eq :: Eq x => x -> x -> Bool

instance (Eq x, Eq y) => Eq (x, y) where
eq (x1, y1) (x2, y2) = eq x1 x2 && eq y1 y2

instance Eq Int where
eq x y = primtiveIntEq x y

test :: Eq (Int, Int) => Bool
test = eq (1,2) (1,2)

{- eval: test ==> True -}

We need to construct a proof evidence d for Eq (Int, Int)
in test. In this example and generally, d needs to be run as a
function by Haskell
NB: Type Inhabitation problem!

15 / 36

In Haskell, proofs ARE type inhabitants

data Eq x where
EqD :: (x -> x -> Bool) -> Eq x

eq :: Eq x -> (x -> x -> Bool)
eq (EqD e) = e

k1 :: Eq x -> Eq y -> Eq (x, y)
k1 d1 d2 = EqD q
where q (x1, y1) (x2, y2) = eq d1 x1 x2 && eq d2 y1 y2

k2 :: Eq Int
k2 = EqD primtiveIntEq

test :: Eq (Int, Int) -> Bool
test d = eq d (1,2) (1,2)

{- eval: test (k1 k2 k2) ==> True -}

How do we obtain (k1 k2 k2) for test? SLD-resolution
alone is not sufficent

16 / 36

Solution - 1: make resolution proof relevant: Horn
formulas as types, proofs as terms

Definition (Basic syntax)

Term t ::= x | K | t t′

Atomic Formula A,B,C,D ::= P t1 ... tn
Horn Formula H ::= B1, ...,Bn ⇒ A
Proof/Evidence e ::= κ | e e′

Axiom Environment Φ ::= · | Φ, (κ : H)

Definition (Resolution)
Φ ` e : A

Φ ` e1 : σB1 · · · Φ ` en : σBn

Φ ` κ e1 · · · en : σA
if (κ : B1, ...,Bn ⇒ A) ∈ Φ

17 / 36

Solution - 1: make resolution proof relevant: Horn
formulas as types, proofs as terms

Consider the following logic program Φ (clause names are
constant proof terms)

κ1 : (Eq x,Eq y)⇒ Eq(x, y)
κ2 : ⇒ Eq Int

Resolve the query ? Eq (Int, Int).

I We have the following resolution reduction:
Φ ` Eq (Int, Int)→κ1 Eq Int,Eq Int→κ2 Eq Int→κ2 ∅

I Corresponding derivation:

Φ ` κ1 : Eq x,Eq y⇒ Eq (x, y) Φ ` κ2 : Eq Int
Φ ` κ1 κ2 : Eq y⇒ Eq (Int, y) Φ ` κ2 : Eq Int

Φ ` κ1 κ2 κ2 : Eq(Int, Int)

18 / 36

Solution - 1: make resolution proof relevant: Horn
formulas as types, proofs as terms

Consider the following logic program Φ (clause names are
constant proof terms)

κ1 : (Eq x,Eq y)⇒ Eq(x, y)
κ2 : ⇒ Eq Int

Resolve the query ? Eq (Int, Int).

I We have the following resolution reduction:
Φ ` Eq (Int, Int)→κ1 Eq Int,Eq Int→κ2 Eq Int→κ2 ∅

I Corresponding derivation:

Φ ` κ1 : Eq x,Eq y⇒ Eq (x, y) Φ ` κ2 : Eq Int
Φ ` κ1 κ2 : Eq y⇒ Eq (Int, y) Φ ` κ2 : Eq Int

Φ ` κ1 κ2 κ2 : Eq(Int, Int)

18 / 36

So far...

I We have started to build a “house" on solid grounds:

NB: automated proof construction = type inhabitation.

Is it a suitable home for real-world Haskell type inference?

19 / 36

So far...

I We have started to build a “house" on solid grounds:

NB: automated proof construction = type inhabitation.
Is it a suitable home for real-world Haskell type inference?

19 / 36

Problem - 2: non-terminating cases of inference
especially common in “generic programming", cf. also “Scrape
your boilerplate with class" papers by Lammel&Jones.
Simple Example of mutually recursive declarations:

data EvenList a = Nil | ECons a (OddList a)
data OddList a = OCons a (EvenList a)

instance (Eq a, Eq (OddList a)) => Eq (EvenList a) where
eq Nil Nil = True
eq (ECons x xs) (ECons y ys) = eq x y && eq xs ys
eq _ _ = False

instance (Eq a, Eq (EvenList a)) => Eq (OddList a) where
eq (OCons x xs) (OCons y ys) = eq x y && eq xs ys
eq _ _ = False

test :: Eq (EvenList Int) => Bool
test = eq Nil Nil

{- eval: test ==> True -}

How to obtain evidence for Eq (EvenList Int)?
20 / 36

Cycling nontermination
Consider the corresponding logic program Φ

κ1 : Eq x,Eq (EvenList x)⇒ Eq (OddList x)

κ2 : Eq x,Eq (OddList x)⇒ Eq (EvenList x)

κ3 : ⇒ Eq Int

I For Query Eq (EvenList Int) :

Φ ` Eq (EvenList Int)→κ2 Eq Int,Eq (OddList Int)→κ3

Eq (OddList Int)→κ1 Eq Int,Eq (EvenList Int)→κ3

Eq (EvenList Int)...

I So what is the d such that Φ ` d : Eq (EvenList Int)?
Think of first occurrence as a coinductive hypothesis, and
the second – as a coinductive conclusion

21 / 36

Cycling nontermination
Consider the corresponding logic program Φ

κ1 : Eq x,Eq (EvenList x)⇒ Eq (OddList x)

κ2 : Eq x,Eq (OddList x)⇒ Eq (EvenList x)

κ3 : ⇒ Eq Int

I For Query Eq (EvenList Int) :

Φ ` Eq (EvenList Int)→κ2 Eq Int,Eq (OddList Int)→κ3

Eq (OddList Int)→κ1 Eq Int,Eq (EvenList Int)→κ3

Eq (EvenList Int)...

I So what is the d such that Φ ` d : Eq (EvenList Int)?

Think of first occurrence as a coinductive hypothesis, and
the second – as a coinductive conclusion

21 / 36

Cycling nontermination
Consider the corresponding logic program Φ

κ1 : Eq x,Eq (EvenList x)⇒ Eq (OddList x)

κ2 : Eq x,Eq (OddList x)⇒ Eq (EvenList x)

κ3 : ⇒ Eq Int

I For Query Eq (EvenList Int) :

Φ ` Eq (EvenList Int)→κ2 Eq Int,Eq (OddList Int)→κ3

Eq (OddList Int)→κ1 Eq Int,Eq (EvenList Int)→κ3

Eq (EvenList Int)...

I So what is the d such that Φ ` d : Eq (EvenList Int)?
Think of first occurrence as a coinductive hypothesis, and
the second – as a coinductive conclusion

21 / 36

Solution-2: Typing Rule for Fixpoint
Φ, α : T ` e : T
Φ ` να.e : T

I We can view να.e as α = e, where α ∈ FV(e)

I Operational meaning: να.e [να.e/α]e

I We can view the type inhabited by such infinite proof as a
coinductive type

I The typing derivation for Φ ` d : Eq(EvenList Int):
...

Φ, α : Eq(EvenList Int) ` κ2 κ3 (κ1κ3 α) : Eq(EvenList Int)

Φ ` να.κ2 κ3 (κ1κ3 α) : Eq(EvenList Int)

where Φ is the same:
κ1 : Eq x,Eq (EvenList x) ⇒ Eq (OddList x)
κ2 : Eq x,Eq (OddList x) ⇒ Eq (EvenList x)

κ3 : ⇒ Eq Int

22 / 36

Solution-2: Typing Rule for Fixpoint
Φ, α : T ` e : T
Φ ` να.e : T

I We can view να.e as α = e, where α ∈ FV(e)

I Operational meaning: να.e [να.e/α]e
I We can view the type inhabited by such infinite proof as a

coinductive type

I The typing derivation for Φ ` d : Eq(EvenList Int):
...

Φ, α : Eq(EvenList Int) ` κ2 κ3 (κ1κ3 α) : Eq(EvenList Int)

Φ ` να.κ2 κ3 (κ1κ3 α) : Eq(EvenList Int)

where Φ is the same:
κ1 : Eq x,Eq (EvenList x) ⇒ Eq (OddList x)
κ2 : Eq x,Eq (OddList x) ⇒ Eq (EvenList x)

κ3 : ⇒ Eq Int

22 / 36

Solution-2: Typing Rule for Fixpoint
Φ, α : T ` e : T
Φ ` να.e : T

I We can view να.e as α = e, where α ∈ FV(e)

I Operational meaning: να.e [να.e/α]e
I We can view the type inhabited by such infinite proof as a

coinductive type
I The typing derivation for Φ ` d : Eq(EvenList Int):

...

Φ, α : Eq(EvenList Int) ` κ2 κ3 (κ1κ3 α) : Eq(EvenList Int)

Φ ` να.κ2 κ3 (κ1κ3 α) : Eq(EvenList Int)

where Φ is the same:
κ1 : Eq x,Eq (EvenList x) ⇒ Eq (OddList x)
κ2 : Eq x,Eq (OddList x) ⇒ Eq (EvenList x)

κ3 : ⇒ Eq Int

22 / 36

Our method unifies
foundations (type theory), implementation (evidence
construction), applications (type class inference)

The ultimate Problem-3: can this go beyond state-of-the-art?

23 / 36

Our method unifies
foundations (type theory), implementation (evidence
construction), applications (type class inference)

The ultimate Problem-3: can this go beyond state-of-the-art?
23 / 36

Outline

(Motivation) Verification methods: the good, the bad and the
ugly

(Background) Proof-carrying code, revisited

(Technical Contribution) Going beyond state-of-the art:
corecursion in type inference

(Conclusion) New type inference recipe: tastes good, does
good

24 / 36

Haskell can handle only cycles, but not loops
[Generally, nontermination may exhibit cycles (formula repeats),
loops (formula repeats modulo substitution), or neither.]

data Mu h a = In (h (Mu h) a)

data HPTree f a = HPLeaf a | HPNode (f (a, a))

instance Eq (h (Mu h) a) => Eq (Mu h a) where
eq (In x) (In y) = eq x y

instance (Eq a, Eq (f (a, a))) => Eq (HPTree f a) where
eq (HPLeaf x) (HPLeaf y) = eq x y
eq (HPNode xs) (HPNode ys) = eq xs ys
eq _ _ = False

tree :: Mu HPTree Int
tree = In (HPLeaf 34)

test :: Eq (Mu HPTree Int) => Bool
test = eq tree tree

25 / 36

Looping
The corresponding logic program Φ:

κ1 : Eq(h (Mu h) a)⇒ Eq(Mu h a)
κ2 : (Eq a,Eq(f (a, a)))⇒ Eq(HPTree f a)

κ3 : (Eq x,Eq y)⇒ Eq(x, y)
κ4 : ⇒ Eq Int

I For query Eq (Mu HPTree Int):
Φ ` Eq(Mu HPTree Int) →κ1 Eq(HPTree (Mu HPTree) Int) →κ2

Eq Int,Eq (Mu HPTree) (Int, Int) →κ4 Eq Mu HPTree (Int, Int) →κ1

Eq(HPTree (Mu HPTree) (Int, Int)) →κ2

Eq (Int, Int),Eq (Mu HPTree) ((Int, Int), (Int, Int)) →κ3,κ4,κ4

Eq Mu HPTree ((Int, Int), (Int, Int))...

I Current Haskell: no cycle detected – no answer!

I In our terms, the question is more subtle: what is the d
such that Φ ` d : Eq (Mu HPTree Int)?
It is no longer a question of cycle detection, but a question
of proof construction

26 / 36

Looping
The corresponding logic program Φ:

κ1 : Eq(h (Mu h) a)⇒ Eq(Mu h a)
κ2 : (Eq a,Eq(f (a, a)))⇒ Eq(HPTree f a)

κ3 : (Eq x,Eq y)⇒ Eq(x, y)
κ4 : ⇒ Eq Int

I For query Eq (Mu HPTree Int):
Φ ` Eq(Mu HPTree Int) →κ1 Eq(HPTree (Mu HPTree) Int) →κ2

Eq Int,Eq (Mu HPTree) (Int, Int) →κ4 Eq Mu HPTree (Int, Int) →κ1

Eq(HPTree (Mu HPTree) (Int, Int)) →κ2

Eq (Int, Int),Eq (Mu HPTree) ((Int, Int), (Int, Int)) →κ3,κ4,κ4

Eq Mu HPTree ((Int, Int), (Int, Int))...

I Current Haskell: no cycle detected – no answer!
I In our terms, the question is more subtle: what is the d

such that Φ ` d : Eq (Mu HPTree Int)?
It is no longer a question of cycle detection, but a question
of proof construction

26 / 36

A Theorem-proving perspective

The logic program Φ:

κ1 : Eq(h (Mu h) a)⇒ Eq(Mu h a)
κ2 : (Eq a,Eq(f (a, a)))⇒ Eq(HPTree f a)

κ3 : (Eq x,Eq y)⇒ Eq(x, y)
κ4 : ⇒ Eq Int

I Directly proving Eq (Mu HPTree Int) seems impossible

I Prove a lemma e : Eq x⇒ Eq (Mu HPTree x) instead
I (e κ4) : Eq (Mu HPTree Int)
I Seeing our previous discussion of formulas with infinite

proof evidence being coinductive types, the proof will need
to be constructed by coinduction

27 / 36

A Theorem-proving perspective

The logic program Φ:

κ1 : Eq(h (Mu h) a)⇒ Eq(Mu h a)
κ2 : (Eq a,Eq(f (a, a)))⇒ Eq(HPTree f a)

κ3 : (Eq x,Eq y)⇒ Eq(x, y)
κ4 : ⇒ Eq Int

I Directly proving Eq (Mu HPTree Int) seems impossible
I Prove a lemma e : Eq x⇒ Eq (Mu HPTree x) instead

I (e κ4) : Eq (Mu HPTree Int)
I Seeing our previous discussion of formulas with infinite

proof evidence being coinductive types, the proof will need
to be constructed by coinduction

27 / 36

A Theorem-proving perspective

The logic program Φ:

κ1 : Eq(h (Mu h) a)⇒ Eq(Mu h a)
κ2 : (Eq a,Eq(f (a, a)))⇒ Eq(HPTree f a)

κ3 : (Eq x,Eq y)⇒ Eq(x, y)
κ4 : ⇒ Eq Int

I Directly proving Eq (Mu HPTree Int) seems impossible
I Prove a lemma e : Eq x⇒ Eq (Mu HPTree x) instead
I (e κ4) : Eq (Mu HPTree Int)

I Seeing our previous discussion of formulas with infinite
proof evidence being coinductive types, the proof will need
to be constructed by coinduction

27 / 36

A Theorem-proving perspective

The logic program Φ:

κ1 : Eq(h (Mu h) a)⇒ Eq(Mu h a)
κ2 : (Eq a,Eq(f (a, a)))⇒ Eq(HPTree f a)

κ3 : (Eq x,Eq y)⇒ Eq(x, y)
κ4 : ⇒ Eq Int

I Directly proving Eq (Mu HPTree Int) seems impossible
I Prove a lemma e : Eq x⇒ Eq (Mu HPTree x) instead
I (e κ4) : Eq (Mu HPTree Int)
I Seeing our previous discussion of formulas with infinite

proof evidence being coinductive types, the proof will need
to be constructed by coinduction

27 / 36

A Theorem-proving perspective

κ1 : Eq(h (Mu h) a)⇒ Eq(Mu h a)
κ2 : (Eq a,Eq(f (a, a)))⇒ Eq(HPTree f a)

κ3 : (Eq x,Eq y)⇒ Eq(x, y)
κ4 : Eq Int

Derive e : Eq x⇒ Eq (Mu HPTree x) using fixpoint typing rule
1. Coinductive Assumption α : Eq x⇒ Eq (Mu HPTree x)

2. Assume α1 : Eq x, to show Eq (Mu HPTree x)

3. Apply κ1, we get a new goal Eq(HPTree (Mu HPTree) x)

4. Apply κ2, we get Eq x,Eq (Mu HPTree) (x, x)

5. Eq x is proven by α1

6. Apply α on Eq (Mu HPTree) (x, x), get Eq (x, x)

7. Apply κ3, α1 on Eq (x, x), Q.E.D.
να.λα1.κ1 (κ2 α1 (α (κ3 α1 α1))) : Eq x⇒ Eq (Mu HPTree x)

28 / 36

A Theorem-proving perspective

κ1 : Eq(h (Mu h) a)⇒ Eq(Mu h a)
κ2 : (Eq a,Eq(f (a, a)))⇒ Eq(HPTree f a)

κ3 : (Eq x,Eq y)⇒ Eq(x, y)
κ4 : Eq Int

Derive e : Eq x⇒ Eq (Mu HPTree x) using fixpoint typing rule
1. Coinductive Assumption α : Eq x⇒ Eq (Mu HPTree x)

2. Assume α1 : Eq x, to show Eq (Mu HPTree x)

3. Apply κ1, we get a new goal Eq(HPTree (Mu HPTree) x)

4. Apply κ2, we get Eq x,Eq (Mu HPTree) (x, x)

5. Eq x is proven by α1

6. Apply α on Eq (Mu HPTree) (x, x), get Eq (x, x)

7. Apply κ3, α1 on Eq (x, x), Q.E.D.
να.λα1.κ1 (κ2 α1 (α (κ3 α1 α1))) : Eq x⇒ Eq (Mu HPTree x)

28 / 36

A Theorem-proving perspective

κ1 : Eq(h (Mu h) a)⇒ Eq(Mu h a)
κ2 : (Eq a,Eq(f (a, a)))⇒ Eq(HPTree f a)

κ3 : (Eq x,Eq y)⇒ Eq(x, y)
κ4 : Eq Int

Derive e : Eq x⇒ Eq (Mu HPTree x) using fixpoint typing rule
1. Coinductive Assumption α : Eq x⇒ Eq (Mu HPTree x)

2. Assume α1 : Eq x, to show Eq (Mu HPTree x)

3. Apply κ1, we get a new goal Eq(HPTree (Mu HPTree) x)

4. Apply κ2, we get Eq x,Eq (Mu HPTree) (x, x)

5. Eq x is proven by α1

6. Apply α on Eq (Mu HPTree) (x, x), get Eq (x, x)

7. Apply κ3, α1 on Eq (x, x), Q.E.D.
να.λα1.κ1 (κ2 α1 (α (κ3 α1 α1))) : Eq x⇒ Eq (Mu HPTree x)

28 / 36

A Theorem-proving perspective

κ1 : Eq(h (Mu h) a)⇒ Eq(Mu h a)
κ2 : (Eq a,Eq(f (a, a)))⇒ Eq(HPTree f a)

κ3 : (Eq x,Eq y)⇒ Eq(x, y)
κ4 : Eq Int

Derive e : Eq x⇒ Eq (Mu HPTree x) using fixpoint typing rule
1. Coinductive Assumption α : Eq x⇒ Eq (Mu HPTree x)

2. Assume α1 : Eq x, to show Eq (Mu HPTree x)

3. Apply κ1, we get a new goal Eq(HPTree (Mu HPTree) x)

4. Apply κ2, we get Eq x,Eq (Mu HPTree) (x, x)

5. Eq x is proven by α1

6. Apply α on Eq (Mu HPTree) (x, x), get Eq (x, x)

7. Apply κ3, α1 on Eq (x, x), Q.E.D.
να.λα1.κ1 (κ2 α1 (α (κ3 α1 α1))) : Eq x⇒ Eq (Mu HPTree x)

28 / 36

A Theorem-proving perspective

κ1 : Eq(h (Mu h) a)⇒ Eq(Mu h a)
κ2 : (Eq a,Eq(f (a, a)))⇒ Eq(HPTree f a)

κ3 : (Eq x,Eq y)⇒ Eq(x, y)
κ4 : Eq Int

Derive e : Eq x⇒ Eq (Mu HPTree x) using fixpoint typing rule
1. Coinductive Assumption α : Eq x⇒ Eq (Mu HPTree x)

2. Assume α1 : Eq x, to show Eq (Mu HPTree x)

3. Apply κ1, we get a new goal Eq(HPTree (Mu HPTree) x)

4. Apply κ2, we get Eq x,Eq (Mu HPTree) (x, x)

5. Eq x is proven by α1

6. Apply α on Eq (Mu HPTree) (x, x), get Eq (x, x)

7. Apply κ3, α1 on Eq (x, x), Q.E.D.
να.λα1.κ1 (κ2 α1 (α (κ3 α1 α1))) : Eq x⇒ Eq (Mu HPTree x)

28 / 36

A Theorem-proving perspective

κ1 : Eq(h (Mu h) a)⇒ Eq(Mu h a)
κ2 : (Eq a,Eq(f (a, a)))⇒ Eq(HPTree f a)

κ3 : (Eq x,Eq y)⇒ Eq(x, y)
κ4 : Eq Int

Derive e : Eq x⇒ Eq (Mu HPTree x) using fixpoint typing rule
1. Coinductive Assumption α : Eq x⇒ Eq (Mu HPTree x)

2. Assume α1 : Eq x, to show Eq (Mu HPTree x)

3. Apply κ1, we get a new goal Eq(HPTree (Mu HPTree) x)

4. Apply κ2, we get Eq x,Eq (Mu HPTree) (x, x)

5. Eq x is proven by α1

6. Apply α on Eq (Mu HPTree) (x, x), get Eq (x, x)

7. Apply κ3, α1 on Eq (x, x), Q.E.D.
να.λα1.κ1 (κ2 α1 (α (κ3 α1 α1))) : Eq x⇒ Eq (Mu HPTree x)

28 / 36

A Theorem-proving perspective

κ1 : Eq(h (Mu h) a)⇒ Eq(Mu h a)
κ2 : (Eq a,Eq(f (a, a)))⇒ Eq(HPTree f a)

κ3 : (Eq x,Eq y)⇒ Eq(x, y)
κ4 : Eq Int

Derive e : Eq x⇒ Eq (Mu HPTree x) using fixpoint typing rule
1. Coinductive Assumption α : Eq x⇒ Eq (Mu HPTree x)

2. Assume α1 : Eq x, to show Eq (Mu HPTree x)

3. Apply κ1, we get a new goal Eq(HPTree (Mu HPTree) x)

4. Apply κ2, we get Eq x,Eq (Mu HPTree) (x, x)

5. Eq x is proven by α1

6. Apply α on Eq (Mu HPTree) (x, x), get Eq (x, x)

7. Apply κ3, α1 on Eq (x, x), Q.E.D.
να.λα1.κ1 (κ2 α1 (α (κ3 α1 α1))) : Eq x⇒ Eq (Mu HPTree x)

28 / 36

Proof-relevant Corecursive Resolution at a glance

Φ ` e1 : σB1 · · · Φ ` en : σBn

Φ ` e e1 · · · en : σA
if (e : B1, ...,Bm ⇒ A) ∈ Φ

Φ, (α : A⇒ B) ` e : A⇒ B HNF(e)

Φ ` να.e : A⇒ B
(NU)

Φ, (α : A) ` e : B
Φ ` λα.e : A⇒ B

(LAM)

Alternatively, take Howard’s system H (STLC), prove
admissibility of the resolution rule, and extend H with rule NU.

29 / 36

Proof-relevant Corecursive Resolution at a glance

Φ ` e1 : σB1 · · · Φ ` en : σBn

Φ ` e e1 · · · en : σA
if (e : B1, ...,Bm ⇒ A) ∈ Φ

Φ, (α : A⇒ B) ` e : A⇒ B HNF(e)

Φ ` να.e : A⇒ B
(NU)

Φ, (α : A) ` e : B
Φ ` λα.e : A⇒ B

(LAM)

Alternatively, take Howard’s system H (STLC), prove
admissibility of the resolution rule, and extend H with rule NU.

29 / 36

Technical Summary

I We extended resolution with coinductive proofs
(coinductive hypothesis + corecursive evidence
construction), and with implicative goals

I The method is robust and extendable: in the limit, we can
go as far as interactive theorem provers go

I However, the most intelligent part now becomes to
generate the coinductive hypotheses

I See our FLOPS’16 paper for a heuristic automating loop
detection and coinductive lemma generation

I So far, it is limited to looping nontermination

30 / 36

Technical Summary

I We extended resolution with coinductive proofs
(coinductive hypothesis + corecursive evidence
construction), and with implicative goals

I The method is robust and extendable: in the limit, we can
go as far as interactive theorem provers go

I However, the most intelligent part now becomes to
generate the coinductive hypotheses

I See our FLOPS’16 paper for a heuristic automating loop
detection and coinductive lemma generation

I So far, it is limited to looping nontermination

30 / 36

Technical Summary

I We extended resolution with coinductive proofs
(coinductive hypothesis + corecursive evidence
construction), and with implicative goals

I The method is robust and extendable: in the limit, we can
go as far as interactive theorem provers go

I However, the most intelligent part now becomes to
generate the coinductive hypotheses

I See our FLOPS’16 paper for a heuristic automating loop
detection and coinductive lemma generation

I So far, it is limited to looping nontermination

30 / 36

Technical Summary

I We extended resolution with coinductive proofs
(coinductive hypothesis + corecursive evidence
construction), and with implicative goals

I The method is robust and extendable: in the limit, we can
go as far as interactive theorem provers go

I However, the most intelligent part now becomes to
generate the coinductive hypotheses

I See our FLOPS’16 paper for a heuristic automating loop
detection and coinductive lemma generation

I So far, it is limited to looping nontermination

30 / 36

Outline

(Motivation) Verification methods: the good, the bad and the
ugly

(Background) Proof-carrying code, revisited

(Technical Contribution) Going beyond state-of-the art:
corecursion in type inference

(Conclusion) New type inference recipe: tastes good, does
good

31 / 36

High-level Summary

Proof-relevant (or Curry-Howard) Resolution:

1. Retains operational semantics of first-order resolution
(Operationally, it is still the ATP we started with!)

2. Proof-relevant (in Curry-Howard sense: Horn Formulas as
Types, proofs as terms)

3. (Co)Recursive (with fixpoint terms inhabiting [coinductive]
formulas with infinite proofs)

4. Coherently unifies type theory, automated proving, type
inference

5. Based on solid principles: Curry-Howard approach to logic,
computation, and proof

6. ... elegantly bridging the gap between ATP and ITP

32 / 36

High-level Summary

Proof-relevant (or Curry-Howard) Resolution:

1. Retains operational semantics of first-order resolution
(Operationally, it is still the ATP we started with!)

2. Proof-relevant (in Curry-Howard sense: Horn Formulas as
Types, proofs as terms)

3. (Co)Recursive (with fixpoint terms inhabiting [coinductive]
formulas with infinite proofs)

4. Coherently unifies type theory, automated proving, type
inference

5. Based on solid principles: Curry-Howard approach to logic,
computation, and proof

6. ... elegantly bridging the gap between ATP and ITP

32 / 36

High-level Summary

Proof-relevant (or Curry-Howard) Resolution:

1. Retains operational semantics of first-order resolution
(Operationally, it is still the ATP we started with!)

2. Proof-relevant (in Curry-Howard sense: Horn Formulas as
Types, proofs as terms)

3. (Co)Recursive (with fixpoint terms inhabiting [coinductive]
formulas with infinite proofs)

4. Coherently unifies type theory, automated proving, type
inference

5. Based on solid principles: Curry-Howard approach to logic,
computation, and proof

6. ... elegantly bridging the gap between ATP and ITP

32 / 36

High-level Summary

Proof-relevant (or Curry-Howard) Resolution:

1. Retains operational semantics of first-order resolution
(Operationally, it is still the ATP we started with!)

2. Proof-relevant (in Curry-Howard sense: Horn Formulas as
Types, proofs as terms)

3. (Co)Recursive (with fixpoint terms inhabiting [coinductive]
formulas with infinite proofs)

4. Coherently unifies type theory, automated proving, type
inference

5. Based on solid principles: Curry-Howard approach to logic,
computation, and proof

6. ... elegantly bridging the gap between ATP and ITP

32 / 36

High-level Summary

Proof-relevant (or Curry-Howard) Resolution:

1. Retains operational semantics of first-order resolution
(Operationally, it is still the ATP we started with!)

2. Proof-relevant (in Curry-Howard sense: Horn Formulas as
Types, proofs as terms)

3. (Co)Recursive (with fixpoint terms inhabiting [coinductive]
formulas with infinite proofs)

4. Coherently unifies type theory, automated proving, type
inference

5. Based on solid principles: Curry-Howard approach to logic,
computation, and proof

6. ... elegantly bridging the gap between ATP and ITP

32 / 36

High-level Summary

Proof-relevant (or Curry-Howard) Resolution:

1. Retains operational semantics of first-order resolution
(Operationally, it is still the ATP we started with!)

2. Proof-relevant (in Curry-Howard sense: Horn Formulas as
Types, proofs as terms)

3. (Co)Recursive (with fixpoint terms inhabiting [coinductive]
formulas with infinite proofs)

4. Coherently unifies type theory, automated proving, type
inference

5. Based on solid principles: Curry-Howard approach to logic,
computation, and proof

6. ... elegantly bridging the gap between ATP and ITP

32 / 36

Automated inference, program, proof

Bringing three classic themes back together:
Automated inference
(type level)

Corresponding func-
tion (term-level)

Proof Principle

terminating resolution

proof evidence construc-
tion

inductive proofs

non-terminating resolu-
tion

corecursive evidence
construction

coinductive proofs

33 / 36

Automated inference, program, proof

Bringing three classic themes back together:
Automated inference
(type level)

Corresponding func-
tion (term-level)

Proof Principle

terminating resolution proof evidence construc-
tion

inductive proofs

non-terminating resolu-
tion

corecursive evidence
construction

coinductive proofs

33 / 36

Automated inference, program, proof

Bringing three classic themes back together:
Automated inference
(type level)

Corresponding func-
tion (term-level)

Proof Principle

terminating resolution proof evidence construc-
tion

inductive proofs

non-terminating resolu-
tion

corecursive evidence
construction

coinductive proofs

33 / 36

Automated inference, program, proof

Bringing three classic themes back together:
Automated inference
(type level)

Corresponding func-
tion (term-level)

Proof Principle

terminating resolution proof evidence construc-
tion

inductive proofs

non-terminating resolu-
tion

corecursive evidence
construction

coinductive proofs

33 / 36

Automated inference, program, proof

Bringing three classic themes back together:
Automated inference
(type level)

Corresponding func-
tion (term-level)

Proof Principle

terminating resolution proof evidence construc-
tion

inductive proofs

non-terminating resolu-
tion

corecursive evidence
construction

coinductive proofs

33 / 36

Automated inference, program, proof

Bringing three classic themes back together:
Automated inference
(type level)

Corresponding func-
tion (term-level)

Proof Principle

terminating resolution proof evidence construc-
tion

inductive proofs

non-terminating resolu-
tion

corecursive evidence
construction

coinductive proofs

33 / 36

Dream for the future

change of methodology for all ATP in Type inference
From:

To...

34 / 36

Dream for the future

How far can it take us? –
New standards of
hygene in type-level
computation?

I We have built a similar
methodology for TRS
(first-order terms as
types, reductions as
proofs).

I Extend to other type
inference problems?

I Extend to ATP richer
than Horn clauses
(e.g. extended Horn
clauses used in
SMT-solvers?

35 / 36

Dream for the future
How far can it take us? –
New standards of
hygene in type-level
computation?

I We have built a similar
methodology for TRS
(first-order terms as
types, reductions as
proofs).

I Extend to other type
inference problems?

I Extend to ATP richer
than Horn clauses
(e.g. extended Horn
clauses used in
SMT-solvers?

35 / 36

Thanks for your attention!

36 / 36

	(Motivation) Verification methods: the good, the bad and the ugly
	(Background) Proof-carrying code, revisited
	(Technical Contribution) Going beyond state-of-the art: corecursion in type inference
	(Conclusion) New type inference recipe: tastes good, does good

